

<input type="text"/>				
----------------------	----------------------	----------------------	----------------------	----------------------

(D1) Dust and Young Stars in Galaxies(D1.1.1) The UV slope of such a typical galaxy is ;(D1.1.2) See *Figure 1*;(D1.1.3) The UV slope of *CR7* is ; [YES] or [NO]? ;(D1.2.1) See *Figure 2*; The best-fit Equation is: ;(D1.2.2) The dispersion is dex;(D1.3.1) A_{1600} as a function of IRX: ;(D1.3.2) See *Figure 3*; The Best-fit Equation is: ;(D1.3.3) Expected UV slope of a dust-free galaxy: ;(D1.4.1) The IRX of *CR7* is ;Here the value is a limit (please fill with [upper] or [lower]);(D1.4.2) Is the current observation deep enough ([YES] or [NO])? .**(D2) Compact Object in a Binary System**(D2.1.1) The maximum acceleration is km/s/day;(D2.1.2) Estimate for the mass of the companion: M_{\odot} ;(D2.2.1) See *Figure 4*; $P_{orb} =$; $K =$;(D2.2.2) $f(M_1, M_2) =$ M_{\odot} ;(D2.3.1) $\sin i =$; $R_1 =$ R_{\odot} ;
 $L_1 =$ L_{\odot} ; $M_1 =$ M_{\odot} ;(D2.3.2) The type of this star should be ;(D2.3.3) See *Figure 5*;(D2.3.4) The possible mass of the unseen companion is M_{\odot} ;It could be a .